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Cyclic Codes

Definition
A linear code C C " is called a cyclic code if for every vector
(a0, a1, .- .,an—2,3n—1) in the code, we have that also the vector

(ap—1,40,a1,...,ap—2) is in the code.




Cyclic Codes

Definition

A linear code C C " is called a cyclic code if for every vector
(a0, a1, .- .,an—2,3n—1) in the code, we have that also the vector

(ap—1,40,a1,...,ap—2) is in the code.

Notice that the definition implies that if (ag, a1, ..., dn—2,35-1) is in the
code, then all the vectors obtained from this one by a cyclic permutation
of its coordinates are also in the code.
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We shall denote by [f] the class of the polynomial f € F[X] in R,.
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We shall denote by [f] the class of the polynomial f € F[X] in R,.
The mapping:
FiX]

F" = ——
' (X =1)

(a0, a1, -+, ap—2,3,—1) € F[X] = lao + a1 X + ...+ ap2X" 7% + 2,1 X" 1.



Let

_ FIX]
= B0 -1y

We shall denote by [f] the class of the polynomial f € F[X] in R,.
The mapping:

FIX
o F" — —[ ]
X0 —1)
(a0, a1 -+, ap—2,3,—1) € F[X] — lao + a1 X + ...+ ap_2 X" + a1 X"

 is an isomorphism of F-vector spaces. Hence A code C C F" is
cyclic if and only if ¢(C) is an ideal of R .



In the case when C, = (a|a" =1) = {1,a,2%,...,a" '} isa
cyclic group of order n, and F is a field, the elements of FC, are of
the form:

a=qop+ara—+ a232 + -+ Oénflan_l-
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In the case when C, = (a|a" =1) = {1,a,2%,...,a" '} isa
cyclic group of order n, and F is a field, the elements of FC, are of
the form:

a=qop+ara—+ a232 + -+ Oénflan_l-

It is easy to show that

F[X]

IFCn = n= 7o 1.1
B = —1)

Hence, to study cyclic codes is equivalent to study
ideals of a group algebra of the form FC,,.
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independently the notion of an Abelian code: one such code, over
a field F is an ideal of the group algebra FA of a finite Abelian
group A.
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A group code is an ideal of a finite group algebra.




S.D. Berman in 1967 and MacWilliams in 1970 introduced
independently the notion of an Abelian code: one such code, over
a field F is an ideal of the group algebra FA of a finite Abelian
group A.

It is then natural to extend this definition.

Definition

A group code is an ideal of a finite group algebra.

In what follows, we shall always assume that char(K) y |G| so all
group algebras considered here will be semisimple and thus, all
ideals of FG are of the form | = FGe, where e € FG is an
idempotent element.



Idempotents from subgroups

Let H be a subgroup of a finite group G and let F be a field such
that car(F) J |G|. The element

1
H= =3 h
I 2

is an idempotent of the group algebra FG, called the idempotent
determined by H.



Idempotents from subgroups

Let H be a subgroup of a finite group G and let F be a field such
that car(F) J |G|. The element

. 1
H:WZh

heH

is an idempotent of the group algebra FG, called the idempotent
determined by H.

H is central if and only if H is normal in G.



Essential idempotents
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Let H be a normal subgroup of G. Then, H is a central
idempotent and, as such, a sum of primitive central idempotents
called its constituents.
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called its constituents.

Let e be a primitive central idempotent of FG. Then:
o If e is not a constituent of H we have that eH = 0.

o If e is a constituent of H we have that eH = e.



Let H be a normal subgroup of G. Then, H is a central
idempotent and, as such, a sum of primitive central idempotents
called its constituents.

Let e be a primitive central idempotent of FG. Then:
o If e is not a constituent of H we have that eH = 0.

o If e is a constituent of H we have that eH = e.

In this last case, we have that FG - e C FG - H.



Denote by T a transversal of H in G. Then, an element
a € FG - e can be written in the form

a = Z Ozl,l/ffl.



Denote by T a transversal of H in G. Then, an element
a € FG - e can be written in the form

a = Z al,ylfl.

If we denote T = {t1,t2,...,tq} and H={hy, ha,..., hpy}, the
explicit expression of « is

a=artithi+astohi+- - Fagtghi+- - Fartihm+aotohp+- - +agtghm.



Denote by T a transversal of H in G. Then, an element
a € FG - e can be written in the form

a = Z al,VI-AI.

If we denote T = {t1,t2,...,tq} and H={hy, ha,..., hpy}, the
explicit expression of « is

a=aitih+astrhi+- - Fagtgh+- - +artihmtastohm+- - +agtghm,.

The sequence of coefficients of o, when written in this order, is
formed by d repetitions of the subsequence a1, az, - ag. In terms
of coding theory, this means that the code given by the minimal
ideal FGe is a repetition code. We shall be interested in
idempotents that are not of this type.



Definition

A primitive idempotent e in the group algebra FG, is an essential
idempotent if e- H = 0, for every subgroup H # (1) in G.

A minimal ideal of FG will be called essential ideal if it is
generated by an essential idempotent.
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Let e € FG be a primitive central idempotent. Then e is essential
if and only if the map 7 : G — Ge, is a group isomorphism.




Definition

A primitive idempotent e in the group algebra FG, is an essential
idempotent if e- H = 0, for every subgroup H # (1) in G.

A minimal ideal of FG will be called essential ideal if it is
generated by an essential idempotent.

Lemma

Let e € FG be a primitive central idempotent. Then e is essential
if and only if the map 7 : G — Ge, is a group isomorphism.

| A\

Corollary

If G is abelian and FG contains an essential idempotent, then G is
cyclic.

\




Assume that G is cyclic of order n = pi* - -- p*. Then, G can be
written as a direct product G = G x - -+ x G, where C; is cyclic,
of order p", 1 < i <t.
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order p; in C; and denote by a; a generator of this subgroup,

1<i<t Set . .
e=(1-Ki) - (1-Kp)

Then e is a non-zero central idempotent.



Assume that G is cyclic of order n = pi* - -- p*. Then, G can be

written as a direct product G = G x - -+ x G, where C; is cyclic,

of order p", 1 < i <t.

Let K; be the minimal subgroup of C;; i.e. the unique subgroup of

order p; in C; and denote by a; a generator of this subgroup,

1<i<t Set . .
e=(1-Ki) - (1-Kp)

Then e is a non-zero central idempotent.

Proposition

Let G be a cyclic group. Then, a primitive idempotent e € FG is
essential if and only if e- ey = e.
Moreover, eg is the sum of all essential idempotents of FG.
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multiplicative order of G in the unit group U(Z,). Then
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order n, with generator g such that (g,n) = 1. Let m be the
multiplicative order of G in the unit group U(Z,). Then

(i) If e is an essential idempotent, then the dimension of F,C - e is
precisely m.

(i) dim(FqCpn)eg = (n) where ¢ denotes Euler’'s Totient function.




Proposition

Let ¥, denote a finite field with g elements, C = C, the cyclic of
order n, with generator g such that (g,n) = 1. Let m be the
multiplicative order of g in the unit group U(Z,). Then

(i) If e is an essential idempotent, then the dimension of F,C - e is
precisely m.

(i) dim(FqCpn)eg = (n) where ¢ denotes Euler’'s Totient function.

(iii) There exist precisely ¢(n)/m essential idempotents in F,C.

v




Applications

Definition (Sabin and Lomonaco (1995))

Let G; and G; denote two finite groups of the same order and let
F be a field. Two ideals (codes) 1 C FGy and l, C FG; are said to
be combinatorially equivalent if there exists a bijection

v : G — Gp whose linear extension 7 : FG; — F Gy is such that
¥(h) = k. The map 7 is called a combinatorial equivalence
between /1 and b.
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Definition (Sabin and Lomonaco (1995))

Let G; and G; denote two finite groups of the same order and let
F be a field. Two ideals (codes) 1 C FGy and l, C FG; are said to
be combinatorially equivalent if there exists a bijection

v : G — Gp whose linear extension 7 : FG; — F Gy is such that
¥(h) = k. The map 7 is called a combinatorial equivalence
between /1 and b.

Theorem (Chalom, Ferraz and PM (2017))

Every minimal ideal in the group algebra of a finite abelian group is
combinatorially equivalent to a minimal ideal in the group algebra
of a cyclic group of the same order.




Applications

Recall that a binary linear code of dimension k and length n is
called simplex if a generating matrix for the code contains all
possible non zero columns of length k. Since these are 2K — 1 in
number, this matrix must be of size k x (2 — 1) so, we must have
n=2k_1.



Applications

Recall that a binary linear code of dimension k and length n is
called simplex if a generating matrix for the code contains all
possible non zero columns of length k. Since these are 2K — 1 in
number, this matrix must be of size k x (2 — 1) so, we must have
n=2k_1.

Theorem (Chalom, Ferraz and PM (2017))

Let C be a binary linear code of dimension k and length
n =2k —1. Then C is a simplex code if and only if it is essencial.




Applications

Let C = {v1,...,Vvm} be a linear code, whose elements we write as
Vi = (V,'71,V,'72,...V,'7,7), 1<i<k—-1,1<i<k—1. Wesay that
C contains no zero column if, for each index j, 1 < j < n, there
exists at least one vector v; € C such that v;; # 0.



Applications

Let C = {v1,...,Vvm} be a linear code, whose elements we write as
Vi = (V,'71,V,'72,...V,'7,7), 1<i<k—-1,1<i<k—1. Wesay that
C contains no zero column if, for each index j, 1 < j < n, there
exists at least one vector v; € C such that v;; # 0.

Theorem (Chalom, Ferraz and PM (2018))

Let C be a binary linear code of constant weight, without zero
columns. Then C is equivalent to a cyclic code which is either
essencial or a repetition code of an essencial one.




Twisted Group Algebra

DA



Definition

Let G be a group and R a commutative ring whose set of
invertible elements we denote by U(R). Consider a set of symbols
G = {g | g € G}. The twisted group algebra of G over R with
twisting t, denoted R!G, is the set of finite sums

R'G = {gezgagg| ag € R}

where addition is defined componentwise and multiplication is
given by the following rules
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extended linearly.




Definition

Let G be a group and R a commutative ring whose set of

invertible elements we denote by U(R). Consider a set of symbols

G = {g | g € G}. The twisted group algebra of G over R with
twisting t, denoted R!G, is the set of finite sums

= {Zag§|ag€R}
geiG

where addition is defined componentwise and multiplication is
given by the following rules

Xy = t(x,y)xy for all x,y € G,
Xa = ax forall x € G and a € R,

extended linearly. Here, the map t: G x G — U(R) is called a
twisting or a factor set if, for x, y,z € G we have that

t(g, h).t(gh,t) = t(h,£0).t(g, ht).
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example Lectures in Abstract Algebra - Jacobson).
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There is a close connection between factor sets and 2-cocycles as
used in cohomology, actually both concepts coincide (see, for
example Lectures in Abstract Algebra - Jacobson).

Several results in this area can be proved via cohomological
concepts but presently we shall use only classical ring theory.

We begin with a very special example of twisting.

Let C = (g) be a cyclic group of order n and let A be an invertible
element in R. Then, the map ty : C x C — U(R) given by

P 1 ifi+j<n
iy — )
tg'g') {A if i+ > n.

is a twisting.



Theorem

Let C = (g) be a cyclic group of order n and let R*C be its
twisted group algebra over a commutative ring R. Set

n—1
A=] t(e. &)
/=1l

Then RtC = R™ C where t) is as above.
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The proof actually shows that R*C and R™ C are the same as sets,
with the same operations, though constructed from different bases.



Theorem

Let C = (g) be a cyclic group of order n and let R*C be its
twisted group algebra over a commutative ring R. Set

n—1

A=] t(e. &)

(=1

Then RtC = R™ C where t) is as above.

The proof actually shows that R*C and R™ C are the same as sets,
with the same operations, though constructed from different bases.

The twisted group algebra of a cyclic group over a commutative
ring is commutative.
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Given a finite Abelian group A, written as a direct product
A= Cp, X - X Cp,, where Cp,, = (gj) is cyclic of order m;, and
invertible elements \; € R, 1 < i <s, set

1, forj+ k< m,
)\iv forj+k2mir
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which is a twisting of C,, = (gi) over R.



Twistings for Abelian groups can be studied in a similar way.
Given a finite Abelian group A, written as a direct product
A= Cp, X - X Cp,, where Cp,, = (gj) is cyclic of order m;, and

invertible elements \; € R, 1 < i <s, set

1, forj+ k< m,
)\iv forj+k2mir

t)x,'(gljagik) = {
which is a twisting of C,, = (gi) over R.

We denote by tp the twisting of A defined as follows. Given
a:gil...gsis’ b=gf' --g¥ € Awe set:

s
t/\(av b) = t/\(g]l_l o 'gslsvg‘]l_1 o gés) = H t)\k(g;(kag'/l(k)'
k=1

where A = (Mg, ..., As).
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Let t be a twisting of A over I such that R'A is commutative.
Then, R*A= R™A for some twisting tp as defined above.
Conversely, a twisted group algebra of the form R®™A is
commutative.
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to coding theory.



Proposition

Let t be a twisting of A over F such that R!A is commutative.
Then, R*A= R™A for some twisting tp as defined above.
Conversely, a twisted group algebra of the form R®™A is
commutative.

The next elementary result is of interest to establish a connection
to coding theory.

Proposition

Let C = (g) be a cyclic group of order n, R a commutative ring
and X an invertible element in R. Let R™ C be the corresponding
twisted group algebra. Then

RIX]

ROC~_ Y1
=X
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We wish to study subgroup idempotents as in group algebras;
however their definition needs to be modified to adapt it to
products with a twisting.
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Proposition

Let C = (g) be a cyclic group of order n and t = ty, with A in a
field F, a twisting of C over F. Given a root o € K, X" — X\ where
K denotes the splitting field of X" — X, we set

I
=

~ 12 o
G=-) a’g.
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[
Il
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Then, 6a is an idempotent of the twisted group algebra F* C.




We wish to study subgroup idempotents as in group algebras;
however their definition needs to be modified to adapt it to
products with a twisting.

Proposition

Let C = (g) be a cyclic group of order n and t = ty, with A in a
field F, a twisting of C over F. Given a root o € K, X" — X\ where
K denotes the splitting field of X" — X, we set

I
=

~ 12 o
G=-) a’g.
n-<

[
Il
o

Then, 6a is an idempotent of the twisted group aIge/tgra/\I[*“'fA C.
Moreover, if 3 # o is another root of X" — A, then C,C3 = 0.




Lemma

Let KfC be the twisted group algebra of a cyclic group C = (g),
of order n, and K algebraically closed field such that char(K) 1 |G]|.
Set \ as needed and let {a;}i1<i<n be the set of all roots of the
polynomial X" — X\ in K. Then

{Co |1<i<n},

is the set of all primitive idempotents of F*C.




Lemma

Let KfC be the twisted group algebra of a cyclic group C = (g),
of order n, and K algebraically closed field such that char(K) 1 |G]|.
Set \ as needed and let {a;}i1<i<n be the set of all roots of the
polynomial X" — X\ in K. Then

{Co |1<i<n},

is the set of all primitive idempotents of F*C.

As before, this result can be extended to finite Abelian groups.



Theorem

Let A be a finite Abelian group written as a direct product

A= Cp, X+ X Cn,, where Cp,, = (g;) is cyclic of order m;, and ¥
a finite field. Assume that the twisted group algebra F*A is
endowed with a twisting tp as defined above, with

NEF, 1<i<s.

Let K be the splitting field of the polynomial £ = [Ti_,(X™ — \;),
and let R; = {cjj |1 < j < m;} be the set of all roots of the
polynomial X™ — X;, 1 < i < m; in K. For each subset of roots
a=(oj,...,as) €R, we set:

€q = (le)aljl 500 (CmS)asjs’

Then
{ea | € R}

is the set of primitive idempotents of KA.
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Lemma

Let A be a finite Abelian group, R a commutative ring, R*A the
corresponding twisted group algebra and

Ao ={a€ A|t(a,h) =t(h,a), Yh € A} the set of regular
elements of A. Let ty be the twisting of Ay obtained by restriction
of t. Then, the center of F*A is the twisted group algebra

Z(F'A) = F®A,.




The case of a finite Abelian group can be reduced to the previous
one due to a simple remark.

Lemma

Let A be a finite Abelian group, R a commutative ring, R*A the
corresponding twisted group algebra and

Ao ={a€ A|t(a,h) =t(h,a), Yh € A} the set of regular
elements of A. Let ty be the twisting of Ay obtained by restriction
of t. Then, the center of F*A is the twisted group algebra

Z(F'A) = F®A,.

v

Since the central primitive idempotents of a semisimple algebra are
also the primitive idempotents of its center, to find the primitive
idempotents of a twisted group algebra of the form KA, using the
lemma above, all we need is to determine Ag, its set of regular
elements and then use the previous Theorem.



Finally, we see how to obtain the idempotents of the original
twisted group algebra F YA via the process known as Galois
descent.



Finally, we see how to obtain the idempotents of the original
twisted group algebra F YA via the process known as Galois
descent.

With the notations above, let G = Gal(K, F) be the Galois group
of Kover F. For 0 € G and a = (a1j,,...,asi,) € R, we set

o-a= (a‘f,-l,...,ag,-s).



Finally, we see how to obtain the idempotents of the original
twisted group algebra F YA via the process known as Galois
descent.

With the notations above, let G = Gal(K, F) be the Galois group
of Kover F. For 0 € G and a = (a1j,,...,asi,) € R, we set

o-a= (a‘f,-l,...,ag,-s).

Thus, G acts on R.



Finally, we see how to obtain the idempotents of the original
twisted group algebra F YA via the process known as Galois
descent.

With the notations above, let G = Gal(K, F) be the Galois group
of Kover F. For 0 € G and a = (a1j,,...,asi,) € R, we set

o-a= (a‘f,-l,...,ag,-s).

Thus, G acts on R.
We also define an action of G on K™ A setting:

a(Zb;) = Zbga ceg.
acA aceA

If o € G, then it follows easily that o(ey) = €s.q-



Finally, we see how to obtain the idempotents of the original
twisted group algebra F YA via the process known as Galois
descent.

With the notations above, let G = Gal(K, F) be the Galois group
of Kover F. For 0 € G and a = (a1j,,...,asi,) € R, we set

o-a= (a‘f,-l,...,ag,-s).

Thus, G acts on R.
We also define an action of G on K™ A setting:

U(Zba§> = Zbga ceg.
acA acA
If o € G, then it follows easily that o(ey) = €s.q-
Hence, for &« € R and o € G, we get o(ey) = €5.q. Since e,.4 is
also a primitive central idempotent, we have G acting on
{ea | € R}. We denote



Finally, we see how to obtain the idempotents of the original
twisted group algebra F YA via the process known as Galois
descent.

With the notations above, let G = Gal(K, F) be the Galois group
of Kover F. For 0 € G and a = (a1j,,...,asi,) € R, we set
o-a= (a‘f,-l,...,ag,-s).

Thus, G acts on R.
We also define an action of G on K™ A setting:

U(Zba§> = Zbga ceg.
acA aceA

If o € G, then it follows easily that o(ey) = €s.q-

Hence, for &« € R and o € G, we get o(ey) = €5.q. Since e,.4 is
also a primitive central idempotent, we have G acting on

{ea | € R}. We denote

So ={o-aloeg}.



Finally, we see how to obtain the idempotents of the original
twisted group algebra F YA via the process known as Galois
descent.

With the notations above, let G = Gal(K, F) be the Galois group
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Proposition

If a € R, then €, =3 5.5 es is a primitive idempotent of F™A.
In addition, every primitive idempotent of F* A is of form e, for
some o € R.

Set
St(a)={c€eG|o-a=a},

the stabilizer of v in G.

For an idempotent e, = > 4 ka3 we can obtain the expression of
the corresponding &, in F!A:

1 _
€a = \St(og)];qtrKF(ka)a'
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If a group G contains a central subgroup N of regular elements,
then its twisted group algebra R*G over a commutative ring R can
also be realized as a twisted group algebra RN7[G/N] of the factor
group G/N over the commutative ring RN.

Let A be a finite Abelian group, Ap the subgroup of its regular

elements. Then:
FtA = (F tAO)V(A/AO).

If e € F'A is a primitive idempotent then:

FtAG = (FtAg)"(A/Ag) & = (F'Ag 8e)(A/Ao).

The simple component FtAge of FtAg is a field, since
FtAy = Z(FtA) is commutative.
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FtAg =~ My(FtAy &),

where d = /[A: Ag].

Assume that Ag = Cpy, X -+ X Gy, where Cp,, = (gj) is cyclic of
order m;. Since FtAq is commutative, there exists invertible
elements \; € F, 1 < <s, such that FtAy = F"Ag, where
AN=(M1,...,Xs). Let K, R and e,, for some a € R, be as
constructed in the corresponding Theorem.



FtAg =~ My(FtAy &),

where d = /[A: Ag].

Assume that Ay = Cp, X - -+ X Cp,, where Cp,, = (gj) is cyclic of
order m;. Since FtAq is commutative, there exists invertible
elements \; € F, 1 < <s, such that FtAy = F"Ag, where
AN=(M1,...,Xs). Let K, R and e,, for some a € R, be as
constructed in the corresponding Theorem.

FtAy e, = F(a) and [FtAg &, : F] = |Sal.
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Proposition

Let t be a twisting of an Abelian group A over a field F and let Ag
be the set of t-regular elements of A. Let H be a subgroup of Ag
and assume that for each element h € H there exists 8, € F*, such
that t(h, k) = BrBkB;L, for all h,k € H. Then
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We need to extend the construction of idempotents given given
above for cyclic subgroups.

Proposition

Let t be a twisting of an Abelian group A over a field F and let Ag
be the set of t-regular elements of A. Let H be a subgroup of Ag
and assume that for each element h € H there exists 8, € F*, such
that t(h, k) = BrBkB;L, for all h,k € H. Then

~ 1 —
Hs ==Y _ By 'h.
7 H] &

heH

is a central idempotent of F tA.

Definition

With the notations above, let H be a subgroup of Ay and

B : H— F* a map denoted as 3(h) = By, for all h € H. We say
that the (H, ) is a t-admissible pair, if t(h, k) = 8,8k, for
all hk € H.
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Hin G. Then,

B={gHs|g e}

is a basis of F'G ﬁg as a vector space over [F.
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Proposition

Let (H, 3) be a t-admissible pair and let 7 be a left transversal of
H in G. Then, R
B={gHs|g e}

is a basis of F'G I/-I\B as a vector space over [F.

This basis can be used to show that the code defined by F*G ﬁg is
equivalent to a repetition code.

As in the case of group algebras, we have that if e ¢ F!G is a
primitive central idempotent, then

o If e is not a constituent of ﬁg we have eﬁﬁ =0.

o If e is a constituent of ﬁﬁ we have eﬁﬁ = e.
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an essential idempotent if el/-l\g =0, for all t-essential pair (H, 3)
with H # {1}.

A minimal ideal of F *G is called an essential ideal if it is
generated by an essential idempotent and non essential otherwise.
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Definition

Let e € F'A be a primitive central idempotent. We say that e is
an essential idempotent if eﬁg =0, for all t-essential pair (H, )
with H # {1}.

A minimal ideal of F *G is called an essential ideal if it is
generated by an essential idempotent and non essential otherwise.

To discuss the existence of essential idempotents we introduce the
following.

Definition

Let e be a primitive central idempotent of F tA. The subgroup
Ke={g € A|ge=fge, for some 3, € F} (1)

of A is called the kernel of e.

A straightforward computation shows that K. C Ap and that
(Ke, ) is an t-admissible pair.
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We consider the idempotent

A primitive central idempotent e € F!G is an essential idempotent
if, and only if, Ko = {1}.

Set I'e = {age|a € F* g € Ay} and denote U(IF*A) the group of
units of FYA. Notice that [ is a central multiplicative subgroup of
U(FtA) containing the subgroup F*e. We define

le

o by (g) = [ze], &

7T:A0—>

where [ge| denotes the class of ge in [/F*e.
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Proposition
A primitive central idempotent e € F'A is essential if, and only if
7 is a group isomorphism.

Let A be a finite abelian group. If FYG contains an essential
idempotent, then Ap is cyclic.

We now investigate if F Ay contains essential idempotents in the
case when A cyclic.

Let p be a prime integer with gcd(p, g) = 1 and assume that
XP — X € F[X] is a reducible polynomial. Then, either XP — \ has
a unique root in IF or it splits in ' as a product of distinct linear

factors.
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Proposition

Let p be a prime integer with ged(p, g) = 1 such that p divides n.
If XP — X splits in T into distinct linear factors, then F!C does not
contain essential idempotents.

Assume that each polynomial XP — X which is reducible in F[X]
contains a unique root in F, 1 </ < r and set

E={1<i<r|XP—\is reducible in F[X]}.

If i € &, then there exists a unique b; € F such that b? = X. In

ni—1

this case set h; = ,p' , Hi = (h;) and B;(h; )—bj'-

1

Then, (H;, 5;) is a t-admissible pair for all i € £. Set

eo = [[(1 - Hig),

ie€

which is a central idempotent of FtG.
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Proposition

Assume that Ap is cyclic group. Then, a primitive central
idempotent e € F'A is essential if and only if eeg = e.

Notice that the proposition above implies that ey is precisely the
sum of all essential idempotents in F!A.

Theorem

With the notation above the twisted group algebra F*A contains
an essential idempotent if and only if Ag is cyclic and such that
each polynomial XP — X which is reducible in F[X] contains a
unique root inIF, 1 < i <r

Theorem

| A

Let A be a cyclic group of order n and n = [];_; p;" the prime
factorization of n. Let A € F be an element of multiplicative order
m and set t = t,. Then, the twisted group algebra F A contains
an essential idempotent if and only if p; does not divide
(g—1)/m, 1<i<r.




Example

Let F be the field F7, A= Cs = (g) and let t be the twisting of A
over [F defined by

1, i+j<n
3, i+j=>n.

t(g‘,gj)Z{

As X8 — 3 has no roots in IF, we see that there is no t-admissible
pair (H, B) with H # {1}, so every primitive central idempotent of
FtG is essential.

v




Example

Let F be the field F7, A= Cs = (g) and let t be the twisting of A
over [F defined by

7 g 1, i+j<n
t(g' &) = o
3, i+j>n.
As X8 — 3 has no roots in IF, we see that there is no t-admissible
pair (H, B) with H # {1}, so every primitive central idempotent of
FtG is essential.

Example

| \

Consider the case when F =F3, A= G x G4 = (x) x (y) and set
t(x'y/, xy") = (-1)".

Then, Ag = (y?) has order 2. Since 2 divides |Ag| and the roots of
X? —1 are +1, we have that Ay does not satisfy the condition of

the last Theorem, so this algebra contains no essential
idemnotentc
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